
The first route of spread of most cancers is through

the lymphatics, prompting the direct assessment of

draining lymph nodes as the first requirement to

define prognosis and to triage patients into the most

appropriate therapy. Resection and direct inspection

of the sentinel lymph node (SLN)-the first node that

receives growth factors, byproducts, and escaping

cancer cells from a tumor focus-has revolutionized the

approach to breast cancer and melanoma patients

and is being expanded to other cancers. SLN

resection in lieu of standard lymphadenectomy to

decrease lymphatic bed injury began over 15 years

ago to stage melanoma and breast tumors because

the tumor and its drainage field are both superficial

(1). Nearly 240,000 SLN resections are now

performed in the USA yearly in breast cancer patients

alone (2), and if the SLN is normal, as is the case in

60-70% of patients, the downstream nodes will not

contain metastases (3, 4). 

Since it was first introduced in 1994 (1), a great deal

of data has been generated on the positive impact of

SLN resection on the care of breast cancer patients.

The intent of limiting resection to the SLN rather than

all axillary nodes is to minimize the disruption of

lymphatics that cripples patients for life with

lymphedema and other complications (5). It is now

established that when the SLN has no tumor deposits,

it carries > 96% predictive value that the downstream

nodes are negative (3, 6). The 4% failure is likely due

to incorrectly labeling a node as the SLN. Since

patients with positive SLNs require removal of all

axillary nodes for proper staging, and since only 30-

40% of SLNs are found malignant (3, 4), SLN

resection has eliminated 2/3 of axillary resections,

decreasing cost and morbidity. The rate of malignant

SLNs will likely continue to decrease as effective

screening identifies more patients with early-stage

disease. It is also important to note that when the SLN

contains macrometastases (≥ 3 mm), which we

should detect, 2/3 of patients will have positive

downstream nodes. In contrast, when the SLN

contains micrometastases (< 3 mm), which we may

miss, 5% of patients will have at most one positive

downstream node (6). 

While SLN resection in breast cancer is mature,

significant challenges still remain: 1) SLN detection

and recognition remains an intra-operative procedure;

2) both the radiocolloid and the blue dye mark the

SLN and also downstream nodes, increasing

dissection and the opportunity to mislabel a

downstream node as the SLN; and 3) SLN resection

is needed to determine if patients require a 2nd

operation to remove all axillary nodes. 

Lymph node filling can be achieved by direct

cannulation of the lymph vessel (not practical) or by

injecting ultra-small particles of iron oxide (20-50 nm)

intravenously (IV) that fill all nodes in the body. While

neither of these methods can be used for SLN

recognition, clinical data show that when nodes are

filled with contrast, metastases are detected as filling

defects (7, 8). SLN filling can also be achieved when

contrast is injected subcutaneously (SQ) in the tissue

drained by the SLN. Water-soluble agents-iodinated

agents, Gd-chelates, and blue dyes injected SQ-pass

freely into both the blood and lymph capillaries to be

cleared rapidly. As molecular weight (9) or particle

size (10) increase, entry into blood vessels slows and

ceases at about 10-20 nm and lymphatic clearance

slows. When particle size was increased from 40 to

400 nm, particles remaining at the injection site

increased from 25 to 95% (11). When particles

exceed 150-200 nm, clearance is dominated by the
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very slow cellular uptake and transport (12). While

non-targeted, small molecular weight agents travel

through the lymph unimpeded, small molecules

targeted to phagocytes and particles are trapped in

the SLN (9, 10). 

SLN resection begins with the injection of a

radiocolloid near the tumor up to a day before surgery.

The radioactive particles slowly enter the lymph

vessel to be captured by lymph nodes. Using a pencil

probe, the surgeon attempts to locate the radioactive

nodes that can be masked by the large radiation field

emitted from the adjacent SQ injection site. Once

likely SLN sites are identified, a blue dye is injected

SQ near the tumor to stain the draining lymph duct

that is tracked surgically to the draining node, which is

removed, its radioactivity measured ex-vivo, and then

sent for detailed histological analysis. A resected

node is considered a SLN if it is blue, hot, or both.

Consensus in breast cancer is that the lowest false-

negative rate (missed SLN) is achieved when the

combination of blue dye and radiocolloid are injected

SQ near the tumor to see and remove the hot and/or

blue nodes (4). Neither the radiocolloid nor the blue

dye are ideal since both mark the SLN as well as

downstream nodes, resulting in greater dissection.

The major challenges in SLN resection are the

inaccuracy in recognizing the true SLN that has to be

done intra-operatively and the need to remove the

node to determine its malignant status.

MBs have been approved as US contrast agents for

cardiac imaging in the USA and for the whole body in

the remainder of the world for over a decade. They

are 1- to 5-μm fluorocarbon gas cores encapsulated

within a single lipid layer. A clinical IV dose is ~1-5×

108 MBs that is delivered in 0.1 to 1 mL total volume

depending on the agent’s formulation. This miniscule

dose is sufficient to fill the heart and all vessels with

echoes and enhance all perfused tissues on real time

US because US is extremely sensitive to MBs (13).

US contrast has had a major impact in cardiac and

liver imaging, with new indications being added as

clinical experience is increasing. MBs are elastic

because of their gas core and thin lipid shell, allowing

them to deform and to expand and contract when

exposed to US pressure. These result in two unique

characteristics that are important for SLN imaging: 1)

when exposed to US pressure, they behave non-

linearly as compared to tissues to generate unique

signals; with appropriate signal processing, complete

tissue subtraction is possible (Fig. 1d), allowing the

recognition of a single MB (13). 2) MB compression

and expansion at the appropriate US frequency and

pressure disrupts the MB shell, resulting in MB

destruction. Analogous to photo-bleaching, MB

destruction sequences have been used to alter image

contrast to be flow- or blood volume-weighted (14), as

well as to estimate relative blood flow (15), or simply

clear the field to watch it refill in real-time. 

Because MBs are deformable, and given the

extreme sensitivity of US to MBs, we hypothesized

that injecting MBs SQ and massaging the site could

push enough MBs into the lymph-particularly the

smaller MBs-to allow sufficient filling of the 1st

draining node, by definition the SLN, to the injection

site, allowing its detection on US. Using the clinical

MB formulation, we showed that not only did the SLN

fill, but the lymph vessel could be followed from the

injection site to the node analogous to the blue dye

used intra-operatively (Fig. 1; from Figs. 1 and 3 of

Ref [16]). The number of times this could be repeated

is significantly affected by MB formulation (17). We

also showed that completely filling the SLN allowed

the detection of nodal metastases as filling defects

(Fig. 1) (16). More important, because MBs in the

node could be eliminated by US, re-massaging the

injection site refilled the lymph vessels and node

again. Since this could be repeated many times, all

lymph vessels draining the injection site and their

associated SLNs can be identified (16), and, the true
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Figure 1. Images from the first proof of concept study show
MBs filling the lymph duct (arrow in (a)) leading to and filling
the draining node (arrowhead in (a) & (b)). Standard US of the
node shows a large tumor (T) within the outline of the node
(c), the normal portion of which begins to fill (arrowhead in
(b)) and completely fills (arrowhead in (d)) while the tumor (T)
appeared as a filling defect. (From Fig 1 and 3 of Ref 16).



SLN more accurately localized. We were issued a

patent (18), the data were first reported at the

Radiological Society of North America in 1999, and

the first publication appeared in 2002 (16). We called

the technique indirect lymphosonography (ILS) and

then optimized the formulation and showed that the

SLN could be refilled over 12 times following a single

1 mL injection (17). 

Since our original reports, several investigators

have duplicated our results (19-26), and advanced the

technique to the clinic in Europe and Japan (22-24),

where MBs are clinically approved. They confirmed in

a pig model that lymph ducts are visible and that

tumors within the node appear as filling defects (20).

More important, ILS performed pre-operatively with a

clinical formulation in 54 breast cancer patients was

as accurate in marking the SLN as the intra-operative

radiocolloid-blue dye technique (24). While we are

proceeding toward a Phase I trial in the USA for this

indication, our ultimate goal is to preoperatively: 1)

recognize and mark the SLN(s) to simplify resection,

minimize injury to the lymphatic bed and decrease

operative time; 2) triage patients into those at high vs.

low risk for lymphatic spread to improve upon the 30-

40% yield and to decrease unnecessary SLN

resections; and 3) detect tumor deposits

preoperatively to eliminate one operation by

proceeding directly to standard lymphadenectomy.

We continue to improve upon the MB formulation to

increase the detection and recognition of the true SLN

and to stage the SLN pre-operatively. More important

we are developing targeted MB formulation to identify

patients at high risk for nodal metastases. 
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